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Abstract. It is shown the construction of a triangle when its circum-
radius and in-radius are known. A justification is proposed by a remarkable
theorem of the French mathematician Poncelet and Euler formulae for the
distances between the circum-circle centre and its in-circles centres. The
described construction is applied to some loci when the triangle is moving
remaining inscribed in a circle and circumscribed with respect to a second
circle.
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Since each triangle ABC has a circumcircle Γ and an incircle ω, the
following two basic questions arise:

1) How circles Γ and ω, with radii R and r, should be located in a
plane that one triangle ABC exists at least which is inscribed in
Γ and circumscribed with respect to ω? In other words, how the
centres O and J of Γ and ω, respectively, should be located that
a triangle ABC exists which is inscribed in Γ and circumscribed
with respect to ω.

2) If the circles Γ and ω are located in such a way that a triangle ABC
exists, which is inscribed in Γ and circumscribed with respect to
ω, how to determine the set of all triangles, which are inscribed in
Γ and circumscribed with respect to ω?

The answer of the second question is given by the following

Theorem 0.1. Poncelet theorem. If the circles Γ and ω are located in
the plane in such a way that a triangle ABC exists, which is inscribed in
Γ and circumscribed with respect to ω, then each point on Γ is a vertex of
a unique triangle, which is inscribed in Γ and circumscribed with respect to
ω [12].
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To a certain extent, this theorem answers to the first question too in
the following way (Fig. 1):

1) Construct an arbitrary circle Γ with centre O and radius R;

2) Using three points on Γ construct a triangle ABC;

3) Construct the in-circle ω in 4ABC;

4) Choose an arbitrary point A1 on Γ and pass the tangent lines t1
and t2 to ω through A1;

5) If t1 and t2 intersect Γ in the points B1 and C1, respectively, the
triangle under search is A1B1C1 (Fig. 1).

Figure 1.

The disadvantage of such a construction, aiming to answer to the
first question, consists in ignoring the in advance-known radius r of the
circle ω. This means that a certain correction is needed which gives the
possibility of controlling the value of r. A solution is to use the following

Theorem 0.2. If 4ABC is inscribed in the circle Γ(O,R) and circum-
scribed with respect to the circle ω(J, r), then the following equality is sat-
isfied OJ2 = R2 − 2Rr [9, 10, 12].

The equality in question is known to be Euler formula. A direct
consequence of theorem 0.2 is the following:

Corollary 0.1. It is satisfied the inequality R ≥ 2r for each triangle ABC
and the equality holds true only for the equilateral triangle.
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The corollary determines an upper bound for the radius r. This
means that the construction of the circle ω is possible only if r ≤ R

2 .

The mentioned construction could be reworked in the following way
using Euler formular from theorem 0.2 (Fig. 2):

1) Construct an arbitrary circle Γ with centre O and radius R;

2) Construct a circle k with centre O and radius
√
R2 − 2Rr;

3) Choose an arbitrary point J on k;

4) Construct a circle ω with centre J and radius r;

5) Pass the tangent lines t1 and t2 to ω through an arbitrary point A
on Γ;

6) If t1 and t2 intersect Γ in the points B and C, respectively, the
triangle under search is ABC (Fig. 2).

Figure 2. Figure 3.

It follows from this construction that in moving the point A on the
circle Γ, we will obtain a triangle ABC always, which is inscribed in Γ and
circumscribed with respect to ω. For this reason each notable point for
he moving triangle ABC will describe a locus when ABC behaves in the
considered way between the two fixed circles Γ and ω. Some of the loci are
connected with the following assertions:

Theorem 0.3. The orthocentre H of 4ABC describes a circle kH with
centre H0 on the line OJ and radius R− 2r (Fig. 3).

Theorem 0.4. The gravity centre G of 4ABC describes a circle kG with

centre G0 on the line OJ and radius
R− 2r

3
(Fig. 3).
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Theorem 0.5. The centre E of Euler circle describes a circle kE with

centre J and radiusc
R− 2r

2
(Fig. 3).

The proofs and a generalization of these assertions are shown in [2].

The circles Γ and ω = ωa could be the circumcircle and an excircle,
respectively. Then Poncelet theorem remains in power, while theorem 0.2
is changed in the following way:

Theorem 0.6. If 4ABC is inscribed in the circle Γ(O,R) and escribed
with respect to the circle ωa(Ja, ra), then OJ2

a = R2 + 2Rra [9, 10, 12].

The equality in this theorem is known to be Euler formula too.

Using Euler formula from theorem 0.6, we can obtain the following
construction:

1) Construct circle Γ with centre O and radius R;

2) Construct circle ka with centre O and radius
√
R2 + 2Rra;

3) Choose an arbitrary point Ja on ka;

4) Construct circle ωa with centre Ja and radius ra;

5) Pass the tangent lines t1 and t2 to ωa through an arbitrary point
A on Γ;

6) If t1 and t2 intersect Γ in the points B and C, respectively, the
triangle under search is ABC.

It follows from this construction that in moving the point A on the
circle Γ, we will obtain a triangle ABC always, which is inscribed in Γ
and escribed with respect to ωa. For this reason each notable point for
he moving triangle ABC will describe a locus when ABC behaves in the
considered way between the two fixed circles Γ and ωa. Some of the loci
are connected with the following assertions:

Theorem 0.7. The orthocentre H of 4ABC describes an arc on a circle
k
′

H with centre H
′

0 on the line OJ and radius R + 2r (Fig. 4).

Theorem 0.8. The centre of gravity G of 4ABC describes an arc on a

circle k
′

G with centre G
′

0 on the line OJ and radius
R + 2r

3
(Fig. 4).
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Theorem 0.9. The centre E of Euler circle describes an arc on a circle

kE with centre Ja and radius
R + 2r

2
(Fig. 4).

Proofs of these theorems will be published in “Mathematics Plus”
Journal.

Figure 4.
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