RELATIONSHIP BETWEEN PONCELET THEOREM AND EULER FORMULAE FOR DISTANCES IN THE TRIANGLE

Sava Grozdev, Veselin Nenkov, Tatiana Madjarova

Abstract

It is shown the construction of a triangle when its circumradius and in-radius are known. A justification is proposed by a remarkable theorem of the French mathematician Poncelet and Euler formulae for the distances between the circum-circle centre and its in-circles centres. The described construction is applied to some loci when the triangle is moving remaining inscribed in a circle and circumscribed with respect to a second circle.

Key words: triangle, circumcircle, incircle, excircle, Poncelet theorem, Euler circle.

Since each triangle $A B C$ has a circumcircle Γ and an incircle ω, the following two basic questions arise:

1) How circles Γ and ω, with radii R and r, should be located in a plane that one triangle $A B C$ exists at least which is inscribed in Γ and circumscribed with respect to ω ? In other words, how the centres O and J of Γ and ω, respectively, should be located that a triangle $A B C$ exists which is inscribed in Γ and circumscribed with respect to ω.
2) If the circles Γ and ω are located in such a way that a triangle $A B C$ exists, which is inscribed in Γ and circumscribed with respect to ω, how to determine the set of all triangles, which are inscribed in Γ and circumscribed with respect to ω ?

The answer of the second question is given by the following
Theorem 0.1. Poncelet theorem. If the circles Γ and ω are located in the plane in such a way that a triangle $A B C$ exists, which is inscribed in Γ and circumscribed with respect to ω, then each point on Γ is a vertex of a unique triangle, which is inscribed in Γ and circumscribed with respect to $\omega[12]$.

To a certain extent, this theorem answers to the first question too in the following way (Fig. 1):

1) Construct an arbitrary circle Γ with centre O and radius R;
2) Using three points on Γ construct a triangle $A B C$;
3) Construct the in-circle ω in $\triangle A B C$;
4) Choose an arbitrary point A_{1} on Γ and pass the tangent lines t_{1} and t_{2} to ω through A_{1};
5) If t_{1} and t_{2} intersect Γ in the points B_{1} and C_{1}, respectively, the triangle under search is $A_{1} B_{1} C_{1}$ (Fig. 1).

Figure 1.
The disadvantage of such a construction, aiming to answer to the first question, consists in ignoring the in advance-known radius r of the circle ω. This means that a certain correction is needed which gives the possibility of controlling the value of r. A solution is to use the following

Theorem 0.2. If $\triangle A B C$ is inscribed in the circle $\Gamma(O, R)$ and circumscribed with respect to the circle $\omega(J, r)$, then the following equality is satisfied $O J^{2}=R^{2}-2 \operatorname{Rr}[9,10,12]$.

The equality in question is known to be Euler formula. A direct consequence of theorem 0.2 is the following:
Corollary 0.1. It is satisfied the inequality $R \geq 2 r$ for each triangle $A B C$ and the equality holds true only for the equilateral triangle.

The corollary determines an upper bound for the radius r. This means that the construction of the circle ω is possible only if $r \leq \frac{R}{2}$.

The mentioned construction could be reworked in the following way using Euler formular from theorem 0.2 (Fig. 2):

1) Construct an arbitrary circle Γ with centre O and radius R;
2) Construct a circle k with centre O and radius $\sqrt{R^{2}-2 R r}$;
3) Choose an arbitrary point J on k;
4) Construct a circle ω with centre J and radius r;
5) Pass the tangent lines t_{1} and t_{2} to ω through an arbitrary point A on Γ;
6) If t_{1} and t_{2} intersect Γ in the points B and C, respectively, the triangle under search is $A B C$ (Fig. 2).

Figure 2.

Figure 3.

It follows from this construction that in moving the point A on the circle Γ, we will obtain a triangle $A B C$ always, which is inscribed in Γ and circumscribed with respect to ω. For this reason each notable point for he moving triangle $A B C$ will describe a locus when $A B C$ behaves in the considered way between the two fixed circles Γ and ω. Some of the loci are connected with the following assertions:

Theorem 0.3. The orthocentre H of $\triangle A B C$ describes a circle k_{H} with centre H_{0} on the line $O J$ and radius $R-2 r$ (Fig. 3).

Theorem 0.4. The gravity centre G of $\triangle A B C$ describes a circle k_{G} with centre G_{0} on the line $O J$ and radius $\frac{R-2 r}{3}$ (Fig. 3).

Theorem 0.5. The centre E of Euler circle describes a circle k_{E} with centre J and radiusc $\frac{R-2 r}{2}$ (Fig. 3).

The proofs and a generalization of these assertions are shown in [2].
The circles Γ and $\omega=\omega_{a}$ could be the circumcircle and an excircle, respectively. Then Poncelet theorem remains in power, while theorem 0.2 is changed in the following way:

Theorem 0.6. If $\triangle A B C$ is inscribed in the circle $\Gamma(O, R)$ and escribed with respect to the circle $\omega_{a}\left(J_{a}, r_{a}\right)$, then $O J_{a}^{2}=R^{2}+2 R r_{a}[9,10,12]$.

The equality in this theorem is known to be Euler formula too.
Using Euler formula from theorem 0.6, we can obtain the following construction:

1) Construct circle Γ with centre O and radius R;
2) Construct circle k_{a} with centre O and radius $\sqrt{R^{2}+2 R r_{a}}$;
3) Choose an arbitrary point J_{a} on k_{a};
4) Construct circle ω_{a} with centre J_{a} and radius r_{a};
5) Pass the tangent lines t_{1} and t_{2} to ω_{a} through an arbitrary point A on Γ;
6) If t_{1} and t_{2} intersect Γ in the points B and C, respectively, the triangle under search is $A B C$.
It follows from this construction that in moving the point A on the circle Γ, we will obtain a triangle $A B C$ always, which is inscribed in Γ and escribed with respect to ω_{a}. For this reason each notable point for he moving triangle $A B C$ will describe a locus when $A B C$ behaves in the considered way between the two fixed circles Γ and ω_{a}. Some of the loci are connected with the following assertions:

Theorem 0.7. The orthocentre H of $\triangle A B C$ describes an arc on a circle k_{H}^{\prime} with centre H_{0}^{\prime} on the line OJ and radius $R+2 r$ (Fig. 4).

Theorem 0.8. The centre of gravity G of $\triangle A B C$ describes an arc on a circle k_{G}^{\prime} with centre G_{0}^{\prime} on the line $O J$ and radius $\frac{R+2 r}{3}$ (Fig. 4).

Theorem 0.9. The centre E of Euler circle describes an arc on a circle k_{E} with centre J_{a} and radius $\frac{R+2 r}{2}$ (Fig. 4).

Proofs of these theorems will be published in "Mathematics Plus" Journal.

Figure 4.

References

[1] S. Grozdev, For High Achievements in Mathematics: The Bulgarian Experience (Theory and Practice), Association for the Development of Education, Sofia, 2007, ISBN: 978-954-92139-1-1.
[2] S. Grozdev, V. Nenkov, T. Madjarova, Circles, generated by the points on four notable lines for a triangle, moving between two fixed circles, Mathematics plus, Vol. 1, 2022, 65-75, ISSN: 0861-8321.
[3] S. Grozdev, V. Nenkov, T. Madjarova, Poncelet-Gergonne circle of a triangle moving between two fixed circles, IJCDM, journal-1.eu, Vol. 7, 2022, 324-337, ISSN: 2367-7775.
[4] S. Grozdev, V. Nenkov, T. Madjarova, Poncelet-Gergonne Circle, Symmetric polynomials and Baricentric Coordinates, IJCDM, journal1.eu, Vol. 7, 2022, 338-343, ISSN: 2367-7775.
[5] M. Georgieva, S. Grozdev, Morfodynamics for the development of the noosphere intelect, (4th ed.), Publ. Hous "Iztok-Zapad", Sofia, 2016, ISBN: 987-619-152-869-1, (In Bulgarian).
[6] S. Karaibryamov, B. Tsareva, B. Zlatanov, Optimization of the Courses in Geometry by the Usage of Dynamic Geometry Software Sam, The Electronic Journal of Mathematics and Technology, Vol. 7, 1, 2013, 22-51, ISSN: 1933-2823.
[7] C. Kimberling, Encyclopedia of Triangle Centers - ETC, https: //faculty.evansville.edu/ck6/encyclopedia/BicentricPairs. html.
[8] V. Nenkov, Mathematical competence increase through dynamic geometry, Archimedes 2000, Sofia, 2020, ISBN: 978-954-779-291-3, (In Bulgarian).
[9] G. Pascalev, I. Chobanov, Notable points in the triangle, Narodna Prosveta, Sofia, 1985, (In Bulgarian).
[10] V. Praxolov, Problems in Plane Geometry. Part I, Nauka, Moscow, 1985, (In Russian).
[11] V. Praxolov, Problems in Plane Geometry. Part II, Nauka, Moscow, 1986, (In Russian).
[12] I. Sharigin, Problems in Geometry. Plane Geometry, Nauka, Moscow, 1986, (In Russian).
[13] T. Sergeeva, M. Shabanova, S. Grozdev, Foundations of dynamic geometry, ASOU, Moscow, 2014.

Sava Grozdev ${ }^{1, *}$, Veselin Nenkov ${ }^{2}$, Tatiana Madjarova ${ }^{3}$
1 "Paisii Hilendarski" University of Plovdiv,
Faculty of Mathematics and Informatics, 236 Bulgaria Blvd., 4003 Plovdiv, Bulgaria
2, 3 "Nikola Vaptsarov" Naval Academy,
73 Vasil Drumev Street, 9002 Varna, Bulgaria
Corresponding author: sava.grozdev@uni-plovdiv.bg

