
ROW-LEVEL SECURITY MODEL

Maria Dobreva, Nikolay Pavlov, Asen Rahnev, Simeon Monov

Abstract. This paper presents the design and implementation of a new
row-level security model which supports propagation of security policies over
database entities following the relations between them. We step upon an
existing model for a database dictionary to abstract our model from the
underlying data store. We present algorithms for policy propagation and
generating necessary commands to restrict access to data. A proof of con-
cept is developed and used in a real-world application.

Key words: row-level security, database dictionary, entity relationship.

Introduction

Every company is unique and has different network infrastructures
and security needs. There are 10 policies that need to be included in
every network-security policy, no matter the company’s size, scope or fo-
cus: root security, PC/Workstation, Server, Email, Web-Access, Remote-
Access, Mobility, Wireless Device, Internet Gateway Configuration, and
Incident-Response Strategy [1]. According to the classification of Edwards,
at least four of the policies are directly related to protecting against unau-
thorized access to data. It is a well-known practice that companies restrict
the access their employees have to data based on the function and the level
in the hierarchy users have within the company.

A majority of enterprises across many industries store their sensitive
information in relational databases. The confidential information includes
data on supply chains, clients, finance, and personnel [5, 6, 7]. In this
paper we put the focus on security control on the data itself through SQL
commands. Securing the network, the database server, and the databases
themselves are out of the scope of this study.

This paper describes the design and implementation of support for
row-level security in a software framework for distributed business appli-
cations [2].

133

23–25 November 2022, Pamporovo, Bulgaria

Database Securable Objects

Within the scope of our research are the schema-related securable
objects: database tables, views, procedures, functions, aggregates [4]. Re-
lational databases commonly provide security on tables and views. A user
that can read from a table can normally read all the data from it. At the
same time, it is a common case that enterprises will want to restrict their
employees (users) from accessing all the data stored in one entity [6]. For
example, a company can restrict its dealers to access data only for clients
in their geographic region. A company can decide to limit users to access
to sales and payments which are performed only by their office or depart-
ment. A health institution can allow the health specialists to access the
data of their own patients only.

Row-level security, also known as data permission security, is a well-
known security feature to restrict users from seeing or modifying some
data rows. While most popular relational database management and re-
porting systems already support some form of row-level security, it became
available in more recent versions of these systems [3].

Software systems that need to implement row-level security can rely
on the existing features of their chosen relational database management
and / or reporting systems. However, administration of row-level security
must be performed in the database or in the reporting tool, or both. This
is a task with technical complexity for database administrators or software
developers, but not for end-users or application administrators.

Within relational databases, row-level security operates using a pred-
icate function, which becomes an integral part of the database schema. Dy-
namic adjustments of these policies increase the complexity of maintaining
the database schema through software updates.

The relational model naturally increases the attack surface. It is com-
mon for data of domain entities to spread over multiple related database
tables and views. The surface is further extended by the available func-
tions and procedures, which can expose data. Proper implementation of
data-row security requires complete understanding of the schema of the
database. Missing a relation can expose sensitive data.

134

International Scientific Conference IMEA’2022

Our Row-Level Security Model

General

Our model for row-level security aims to:

1. Improve security by propagation of security policies to related ta-
bles.

2. Remove the row-level security definitions from the database sche-
ma.

3. Improve the user-experience for definition security policies.

4. Integrate seamlessly with database layer access in the application
model.

Our row-level security model also relies on predicate functions to
determine the access on each level. Each predicate function is a list of
Boolean conditions in the following form:

{column} {expression} {column | value | configuration key}

{column} is the name of a field from the database table, or a related
database table. The format of the column name is defined by [2] and is:

FieldName [\ FieldName [\ ...]]

It is parsed from left to right, and every name is analyzed:

1. The algorithm discovers the corresponding table field for the cur-
rent name.

2. If the field is not a lookup field, the actual field is returned. No
further parsing is performed.

3. If the field is a lookup field, the algorithm uses the metadata to
identify the referred table. Then, it continues with the next field
on the path. If the path ends with a lookup field, the algorithm
automatically uses the default user identifier field for the referred
table.

Examples:

OrderNumber: the number of the order

135

23–25 November 2022, Pamporovo, Bulgaria

• Client\Name: the name of the client of the order

• Client\Country: the country primary key of the client of the
order

• Client\Country\Code: the country code of the client of the order

{expression} is a conditional operator. We support:

• Comparison: =, <, >, <>, <=, >=

• Is empty

• Is not empty

• In list

{value} is a user-defined constant, which must correspond with the
type of the data table field.

{configuration key} is the name of an item of the current appli-
cation configuration or execution state. For example, it can be the unique
identifier of the current user.

Propagation of Security Policies

A key feature of our model is the propagation of security policies.
Propagation means that security policies, defined for one table, must be
applied to all tables which have one-to-many relationship with the former
both directly and indirectly via other such tables.

Let’s consider the following data model:

Figure 1. Propagation example

We define a security policy like this:

Table Rule

Countries Name = ‘‘Bulgaria’’

Table 1. Define security policy

136

International Scientific Conference IMEA’2022

Obviously, the policy will allow only access to the record from table
Countries where the name is equal to “Bulgaria”. Logically, though, it is
expected that users with this policy must not see clients that are not from
Bulgaria, and consequently, orders of clients that are not from Bulgaria.
Propagation provides exactly this behavior: applying a security policy to
all related entities in the chain of relationship. Thus, we guarantee that
security policies cover all interrelated tables and views, and we narrow the
attack surface.

Propagation in our model works only from parent to child tables.
Rules are not propagated “upwards” the relationship, i.e., from child to a
parent.

We construct a cyclic oriented graph of the database, where each
table is a node, and each relation is a directed link. For every possible
source of data in the query, which are the tables and views in the FROM
clause and all JOIN-ed such, we check if there exists a policy for that table
and view or any table and view that is directly or indirectly connected to
it.

Implementation

We have implemented a component which integrates with the data
access layer of the application. Discovered applicable security policies are
used to modify the SQL statement generated by the data access layer.

The algorithm works in the following steps:

1. Analyzes the generated SQL query and breaks it down into pri-
mary parts: SELECT, FROM, WHERE, GROUP BY, ORDER BY, HAVING.

2. For each security policy we traverse the data model graph to deter-
mine whether the policy is applicable. We use Dijkstra’s algorithm
[8]. Our algorithm detects cyclic relations: if we encounter a direct
or indirect cycling relation, we break the traversal.

3. We add the necessary tables to the FROM clause as join operators
using the metadata about relations from the database itself. We
detect and eliminate redundant joins.

4. We add the necessary constraints in the WHERE clause.

For example, let’s consider the following model:

137

23–25 November 2022, Pamporovo, Bulgaria

Figure 2. Data Model

And a policy:

Countries\Name = ‘‘Bulgaria’’

The original query is to retrieve the sum of payments of all customers
on a given date, sorted by customer name.

SELECT c.Name, SUM (op.Amount)

FROM order_payments op

INNER JOIN clients c ON c.Id = op.ClientID

WHERE op.Date = GetDate()

GROUP BY c.Name

ORDER BY c.Name
Original query

Despite the fact that there exists no policy for tables order payments
and clients, our model will discover that the policy on table “Countries”
must be applied because table “Clients” is linked to table “Countries”.
Our implementation will modify the query as follows:

SELECT c.Name, SUM (op.Amount)

FROM order_payments op

INNER JOIN clients c ON c.Id = op.ClientID

INNER JOIN countries c1 ON c1.id = c.CountryId

WHERE op.Date = GetDate()

AND c1.Name = ‘‘Bulgaria’’

GROUP BY c.Name

ORDER BY c.Name

Query with applied policy

138

International Scientific Conference IMEA’2022

We cache security policies and generated SQL statements to improve
performance.

As a part of our implementation, we have created a graphical user
interface for authoring security policies. With the help of the database
dictionary [2] we provide well-known, user-friendly names of fields and
tables for the application administrators.

Conclusion

We presented a new model for row-access data security for relational
databases, which extends its application to related tables and views. An
implementation is created for an application for distributed business ap-
plications, which is used for the development of several software products
for the insurance industry in the Netherlands. There our model is tested
successfully in practice.

References

[1] J. Edwards, Company Security Policy 101, 2007,
http://www.networksecurityjournal.com/features/

security-policy-101-102307/.

[2] N. Pavlov, Rich Metadata Model for Business Applications with
Database Dictionary, International Journal of Applied Science and
Technology (IJAST), Vol. 4, No. 2, 2014, 58–66, ISSN 2221-0997.

[3] SQL Server Row Level Security, 2022, https://learn.

microsoft.com/en-us/sql/relational-databases/security/

row-level-security?view=sql-server-ver16.

[4] SQL Server Securables, 2022, https://learn.microsoft.com/

en-us/sql/relationaldatabases/security/securables?view=

sql-server-ver16.

[5] N. Bhatnagar, Security in Relational Databases, Handbook of Infor-
mation and Communication Security, Springer, Berlin, Heidelberg,
2010, 257–272, https://doi.org/10.1007/978-3-642-04117-4_14.

[6] M. Mateev, INDUSTRY 4.0 AND THE DIGITAL TWIN FOR
BUILDING INDUSTRY, Industry 4.0, 5 (1), 2020, 29–32, https:

//stumejournals.com/journals/i4/2020/1/29.

[7] M. Mateev, Creating Modern Data Lake Automated Workloads for
Big Environmental Projects, 18th Annual International Conference
on Information Technology & Computer Science, Athens, 2022.

139

23–25 November 2022, Pamporovo, Bulgaria

[8] E. Dijkstra, A note on two problems in connexion with graphs, Nu-
merische Mathematik, 1959, 1, 269–271, https://doi.org/10.1007/
BF01386390.

Maria Dobreva1,∗, Nikolay Pavlov2, Asen Rahnev3, Simeon Monov4

1, 2, 3, 4 “Paisii Hilendarski” University of Plovdiv,
Faculty of Mathematics and Informatics,
236 Bulgaria Blvd., 4003 Plovdiv, Bulgaria

Corresponding author: m-dobreva@uni-plovdiv.bg

140

