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Abstract. In this article we consider a new extended Lienard–type system
with “corrections” of the first kind Chebyshev’s polynomial Tn. The number
and type of limit cycles in the light of Melnikov’s consideration are also
studied. We will explicitly note that the y(t)-components of the differential
systems can be used successfully in modeling and approximating of “U–
shaped transfer functions” and some point sets in the field of signal theory.
Numerical examples, illustrating our results using CAS MATHEMATICA
are given.

Key words: Lienard system, Melnikov’s approach, first kind Chebyshev’s
polynomial Tn, extended model, number of limit cycles, “U–shaped transfer
functions”, level curves.

2020 Mathematics Subject Classification: 65L07, 34A34

1. Introduction

The Melnikov polynomial [1] for the system dx
dt = y− ε

(
a1x+ a2x

2+

· · ·+ a2n+1x
2n+1

)
; dy
dt = −x is defined as

P (r2, n) =
a1

2
+

3

8
a3α

2 + · · ·+
(

2n+ 2

n+ 1

)
a2n+1

22n+2
r2n. (1.1)

It is known [3, 4] that the system for sufficiently small ε 6= 0 has
at most n limit cycles asymptotic to circles of radii rj, j = 1, 2, . . . , n as
ε → 0 if and only if the nth degree polynomial P (r2, n) has n positive
roots r2 = r2

j , j = 1, 2, . . . , n. Denote by Tn the first kind Chebyshev’s
polynomial (see Fig. 1). The polynomials take part in some problems like
antenna synthesis [5]–[7].

105



23–25 November 2022, Pamporovo, Bulgaria

Figure 1. The polynomials Tn(x) for n = 7, n = 9 and n = 11

2. Main Results. Simulations

In this Section we consider the following model of the type:
dx

dt
= y − εTn(x)

dy

dt
= −x

(1.2)

where ε > 0 and Tn(x) for n = 5, 7, 9, . . . is the Chebyshev’s polynomial
of the first kind. The simulation for user-selected coefficient ε = 0.001 and
n = 9, with the model (1.2) for x0 = 0, y0 = 0.1 is shown in Fig. 2.

Figure 2. The solutions of the system for ε = 0.001 and n = 9
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The case n = 9

Consider the model for µ > 0, ε > 0
dx

dt
= y − ε(256x9 − 576x7 + 432x5 − 120x3 + µx)

dy

dt
= −x

(1.3)

The following is valid:

Theorem 2.1. The Lienard–type system [2] (1.3) for n = 9, and for all
sufficiently small ε 6= 0 for µ = 8.43986521 has two simple limit cycles
0.388002, 1.0215 and limit cycle 0.808078 with multiplicity – two.

We note that for the polynomial P (r2, 4) (see Fig. 3) we have:

P (r2, 4) =
µ

2
− 45r2 + 135r4 − 315

2
r6 + 63r8. (1.4)

Figure 3. The Melnikov polynomial P (r2, 4) for n = 9 and µ = 8.43986521

Related problems and possible applications

Consider a Lienard system for 0 ≤ ε ≤ 1
dx

dt
= y

dy

dt
= g(x) + εf(x)y

(1.5)
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Figure 4. Example 1 Figure 5. Example 2

Numerical examples

Example 1. The solution of the system (1.5) for ε = 0.0001, g(x) =
T7(x) = 64x7− 112x5 + 56x3− 7x, f(x) = x− 1

3x
3 (see “correction” of the

Van der Pol oscillator model) is visualized on Fig. 4.

Example 2. The solution of the system (1.5) for ε = 0.0001, g(x) =
T9(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x, f(x) = x− 1

3x
3 is visualized

on Fig. 5.

We will explicitly note that the y(t)-components of the differential
systems can be used successfully in modeling and approximating of “U–
shaped transfer functions” (see Fig. 6) and some point sets in the field of
signal theory. For other results see [8]–[12].

Figure 6. A typical “U–shaped transfer

function”

Figure 7. The model y(θ) (Example 1)

for x0 = 0.5, y0 = 0.5 in (−π
2
, π

2
) for

a = 0.55

Applications. We will consider two typical examples.
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A). It is easy to take into account that the change of the variable t
with t = a cos θ in the y-component of the solution of the system (1.5) –
(Example 1) leads to a good approximation of “U–shaped transfer func-
tion” at an appropriately selected interval. By varying the parameter a, a
variety of interesting models are obtained (see Fig. 7).

B). The change of the variable t with t = a cos θ in the y-component
of the solution of the system (1.5) (Example 2) leads to a diagram – char-
acteristic of a filter (see Fig. 8).

Figure 8. Application for modeling and analysis of filter–characteristics. The model y(θ)

(Example 2) for x0 = 0.9, y0 = 0.8 in (−π
2
, π

2
) for a = 0.11

The level curves

In the last decades, the generalized polynomial Lienard differential
systems have been studied intensively. For more details of existing im-
portant results on the topic: Limit cycles bifurcations of some generalized
polynomial Lienard system see [13]–[17]. Consider the class of Lienard
polynomial systems of the type

dx

dt
= y

dy

dt
= T7(x) + ε(ax+ bx2 + cx4 + dx6)y

(1.6)

where 0 ≤ ε < 1; T7(x) = 64x7− 112x5 + 56x3− 7x is the Chebyshev poly-
nomial of the first kind and a, b, c, d are bounded parameters. Without
going into details, we will note some interesting level curves. For ε = 0 the

109



23–25 November 2022, Pamporovo, Bulgaria

system (1.6) is a Hamiltonian system with Hamiltonian

H(x, y) = H(x, y) =
y2

2
− 8x8 +

56x6

3
− 56x4

4
+

7x2

2
.

Figure 9. The level curves
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