INVESTIGATIONS ON A DIFFERENTIAL SYSTEM WITH CORRECTION OF ZERNIKE-TYPE RADIAL POLYNOMIALS. SIMULATIONS

Evgenia Angelova, Valia Arnaudova, Todorka Terzieva, Anna Malinova

Abstract. In this article we consider a new extended Lienard differential system with "corrections" of the Zernike-type radial polynomials R_n^1 . The number and type of limit cycles in the light of Melnikov's consideration are also studied. Numerical examples, illustrating our results using CAS MATHEMATICA are given.

Key words: Lienard system, Melnikov's approach, Zernike–type radial polynomials R_n^1 .

2020 Mathematics Subject Classification: 65L07, 34A34

1. Introduction

Consider the Lienard system [2]

$$\begin{cases} \frac{dx}{dt} = y - \epsilon \left(a_1 x + a_2 x^2 + \dots + a_{2n+1} x^{2n+1} \right) \\ \frac{dy}{dt} = -x \end{cases}$$
(1.1)

The *Melnikov polynomial* for the system (1.1) is defined as

$$P(r^2, n) = \frac{a_1}{2} + \frac{3}{8}a_3\alpha^2 + \dots + \left(\begin{array}{c}2n+2\\n+1\end{array}\right)\frac{a_{2n+1}}{2^{2n+2}}r^{2n}.$$
 (1.2)

It is known [3, 4] that the system (1.1) for sufficiently small $\epsilon \neq 0$ has at most *n* limit cycles asymptotic to circles of radii r_j , j = 1, 2, ..., nas $\epsilon \to 0$ if and only if the *n*th degree polynomial $P(r^2, n)$ has *n* positive roots $r^2 = r_j^2$, j = 1, 2, ..., n.

Denote by R_n^1 the Zernike-type radial polynomials. In this paper we consider a extended Lienard-type system with the polynomial R_n^1 . The

number and type of limit cycles is also studied. Numerical examples, illustrating our results using CAS MATHEMATICA are given.

2. Main Results. Simulations

2.1. Extended Lienard–type planar system

The Zernike polynomials form a complete basis set of functions that are orthogonal over a circle of unit radius. The even Zernike polynomials are defined as (see [7, 8]) $Z_n^m(x, \phi) = R_n^m(x) \cos(m\phi)$, where R_n^m are the radial polynomials. In this Section we consider formally the following model:

$$\begin{cases} \frac{dx}{dt} = y - \epsilon R_n^1(x) \\ \frac{dy}{dt} = -x \end{cases}$$
(1.3)

where $\epsilon > 0$ and n = 5, 7, 9, 11, ...

Figure 1. The polynomials $R_n^1(x)$ for n = 5, 7, 9, 11

For example we have (see Fig. 1).

$$\begin{aligned} R_5^1(x) &= 3x - 12x^3 + 10x^5 \\ R_7^1(x) &= -4x + 30x^3 - 60x^5 + 35x^7 \\ R_9^1(x) &= 5x - 60x^3 + 210x^5 - 280x^7 + 126x^9 \\ R_{11}^1(x) &= -6x + 105x^3 - 560x^5 + 1260x^7 - 1260x^9 + 462x^{11} \end{aligned}$$

Polynomials of this type can be used as correction factors in the Lienard differential system. The solutions of the system

$$\begin{cases} \frac{dx}{dt} = y - \epsilon(R_5^1(x)) \\ \frac{dy}{dt} = -x \\ 88 \end{cases}$$
(1.4)

for $\epsilon = 0.001$; $x_0 = 0.7$, $y_0 = 0.1$ are depicted on Fig. 2.

Figure 2. The solutions of the differential system (1.4)

2.2. The new model in the light of Melnikov's considerations

The case n = 9.

Figure 3. a) The Melnikov polynomial P(r², 4) for n = 9 and µ = 5 (four limit cycles);
b) The Melnikov polynomial P(r², 4) for n = 9 and µ = 4.775885349 (two simple limit cycles: 0.435266, 1.00617 and limit cycle 0.7960 with multiplicity - two)

Consider the model

$$\begin{cases} \frac{dx}{dt} = y - \epsilon(\mu x - 60x^3 + 210x^5 - 280x^7 + 126x^9) \\ \frac{dy}{dt} = -x \end{cases}$$
(1.5)

where $\mu > 0$, $\epsilon > 0$.

Figure 4. The catastrophe surface (x, y, p_2) for the following values of $p_2 = 5$; 10; 15

The following is valid

Proposition 2.1. The Lienard-type system for n = 9, and for all sufficiently small $\epsilon \neq 0$ for $\mu = 4.775885349$ has two simple limit cycles: 0.435266, 1.00617 and limit cycle 0.7960 with multiplicity – two.

Proof. For the Melnikov polynomial in r^2 (see Fig. 3) we have:

$$P(r^{2},4) = \frac{\mu}{2} - \frac{45}{2}r^{2} + \frac{525}{8}r^{4} - \frac{1225}{16}r^{6} + \frac{3969}{128}r^{8}.$$
 (1.6)

Evidently, for example $\mu = 4.775885349$ we have two simple limit cycles and limit cycle with multiplicity – two.

The catastrophe surfaces for n = 9, $(x, y, p_2) = p_2 x - 60x^3 + 210x^5 - 280x^7 + 126x^9 - y$ for the model is shown on Fig. 4.

Consider a Lienard system of type

$$\begin{cases} \frac{dx}{dt} = y \\ \frac{dy}{dt} = g(x) + \epsilon f(x)y \end{cases}$$
(1.7)

where $0 \le \epsilon \le 1$.

The solution of the system (1.7) for $x_0 = 0.5$, $y_0 = 0.5$, $\epsilon = 0.0001$, $g(x) = R_9^1(x)$, $f(x) = x - x^3 + x^5 - \frac{1}{7}x^7$ is visualized on Fig. 5. The solution of the system (1.7) for $x_0 = 0.7$, $y_0 = 0.3$, $\epsilon = 0.0001$, $g(x) = R_9^1(x)$, $f(x) = x - x^3 + x^5 - \frac{1}{7}x^7$ is depicted on Fig. 6.

For other results see [9]-[13].

Figure 5. a) The solutions of the system (1.7) for $x_0 = 0.5$, $y_0 = 0.5$, $\epsilon = 0.001$, $\epsilon = 0.0001$, $g(x) = R_9^1(x)$, $f(x) = x - x^3 + x^5 - \frac{1}{7}x^7$; b) the y-component of the solution; c) the portrait

Figure 6. a) The solutions of the system (1.7) for $x_0 = 0.7$, $y_0 = 0.3$, $\epsilon = 0.001$, $\epsilon = 0.0001$, $g(x) = R_9^1(x)$, $f(x) = x - x^3 + x^5 - \frac{1}{7}x^7$; b) the y-component of the solution; c) the portrait

Acknowledgments

This work has been accomplished with the financial support by the Project FP21-FMI-002 "Intelligent innovative ICT in research in mathematics, informatics and pedagogy of education", (2021 - 2022).

References

- [1] V. Melnikov, On the stability of a center for time-periodic perturbation, *Tr. Mosk. Mat. Obs.*, 12, 1963.
- [2] A. Lienard, Etude des oscillations entretenues, *Revue generale de e'electricite*, 23, 1828, 901–912 and 946–954.
- [3] T. Blows, L. Perko, SIAM (Soc. Ind. Appl. Math.) Rev., 36, 341, 1994.
- [4] L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1991.
- [5] N. Kyurkchiev, A. Andreev, Approximation and Antenna and Filters synthesis. Some Moduli in Programming Environment MATHE-

MATICA, LAP LAMBERT Academic Publishing, Saarbrucken, 2014, ISBN: 978-3-659-53322-8.

- [6] N. Kyurkchiev, Some Intrinsic Properties of Tadmor-Tanner Functions: Related Problems and Possible Applications, *Mathematics* 2020, 8, 1963.
- [7] F. Zernike, Mon. Not. R. Astron. Soc., 1934, 94, 377–384.
- [8] V. lakshminarayanan, A. Fleck, Zernike polynomials: a guide, Journal of Modern Optics, 58 (7), 2011, 545–561.
- [9] V. Kyurkchiev, N. Kyurkchiev, On an extended relaxation oscillator model: number of limit cycles, simulations. I, *Communications in Applied Analysis*, 26, No. 1, 2022.
- [10] V. Kyurkchiev, A. Iliev, A. Rahnev, N. Kyurkchiev, A technique for simulating the dynamics of some extended relaxation oscillator models. II, *Communications in Applied Analysis*, 26, No. 1, 2022.
- [11] V. Kyurkchiev, A. Iliev, A. Rahnev, N. Kyurkchiev, Another extended polynomial Lienard systems: simulations and applications. III, *International Electronic Journal of Pure and Applied Mathematics*, 16, No. 1, 2022, 55–65.
- [12] V. Kyurkchiev, A. Iliev, A. Rahnev, N. Kyurkchiev, Investigations on some polynomial Lienard-type systems: number of limit cycles, simulations, *International Journal of Differential Equations and Applications*, **21**, No. 1, 2022, 117–126.
- [13] V. Kyurkchiev, N. Kyurkchiev, A. Iliev, A. Rahnev, On some extended oscillator models: a technique for simulating and studying their dynamics, Plovdiv, Plovdiv University Press, 2022, ISBN: 978-619-7663-13-6.

Evgenia Angelova¹, Valia Arnaudova²,

Todorka Terzieva³, Anna Malinova^{4,*}

^{1,3,4} University of Plovdiv "Paisii Hilendarski",

Faculty of Mathematics and Informatics,

24 Tzar Asen Str., 4000 Plovdiv, Bulgaria

² Smolyan Filial, University of Plovdiv,

32 Dicho Petrov Str., 4700 Smolyan, Bulgaria

Corresponding author: malinova@uni-plovdiv.bg