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Abstract. In this article we consider a new extended Lienard differential
system with “corrections” of the Zernike–type radial polynomials R1

n. The
number and type of limit cycles in the light of Melnikov’s consideration
are also studied. Numerical examples, illustrating our results using CAS
MATHEMATICA are given.
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1. Introduction

Consider the Lienard system [2]
dx

dt
= y − ε

(
a1x+ a2x

2 + · · ·+ a2n+1x
2n+1

)
dy

dt
= −x

(1.1)

The Melnikov polynomial for the system (1.1) is defined as

P (r2, n) =
a1

2
+

3

8
a3α

2 + · · ·+
(

2n+ 2

n+ 1

)
a2n+1

22n+2
r2n. (1.2)

It is known [3, 4] that the system (1.1) for sufficiently small ε 6= 0
has at most n limit cycles asymptotic to circles of radii rj, j = 1, 2, . . . , n
as ε → 0 if and only if the nth degree polynomial P (r2, n) has n positive
roots r2 = r2

j , j = 1, 2, . . . , n.

Denote by R1
n the Zernike–type radial polynomials. In this paper we

consider a extended Lienard–type system with the polynomial R1
n. The
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number and type of limit cycles is also studied. Numerical examples, illus-
trating our results using CAS MATHEMATICA are given.

2. Main Results. Simulations

2.1. Extended Lienard–type planar system

The Zernike polynomials form a complete basis set of functions that
are orthogonal over a circle of unit radius. The even Zernike polynomi-
als are defined as (see [7, 8]) Zm

n (x, φ) = Rm
n (x) cos(mφ), where Rm

n are
the radial polynomials. In this Section we consider formally the following
model: 

dx

dt
= y − εR1

n(x)

dy

dt
= −x

(1.3)

where ε > 0 and n = 5, 7, 9, 11, . . . .

Figure 1. The polynomials R1
n(x) for n = 5, 7, 9, 11

For example we have (see Fig. 1).

R1
5(x) = 3x− 12x3 + 10x5

R1
7(x) = −4x+ 30x3 − 60x5 + 35x7

R1
9(x) = 5x− 60x3 + 210x5 − 280x7 + 126x9

R1
11(x) = −6x+ 105x3 − 560x5 + 1260x7 − 1260x9 + 462x11

Polynomials of this type can be used as correction factors in the
Lienard differential system. The solutions of the system

dx

dt
= y − ε(R1

5(x))

dy

dt
= −x

(1.4)
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for ε = 0.001; x0 = 0.7, y0 = 0.1 are depicted on Fig. 2.

Figure 2. The solutions of the differential system (1.4)

2.2. The new model in the light of Melnikov’s considerations

The case n = 9.

Figure 3. a) The Melnikov polynomial P (r2, 4) for n = 9 and µ = 5 (four limit cycles);

b) The Melnikov polynomial P (r2, 4) for n = 9 and µ = 4.775885349 (two simple limit

cycles: 0.435266, 1.00617 and limit cycle 0.7960 with multiplicity – two)

Consider the model
dx

dt
= y − ε(µx− 60x3 + 210x5 − 280x7 + 126x9)

dy

dt
= −x

(1.5)

where µ > 0, ε > 0.
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Figure 4. The catastrophe surface (x, y, p2) for the following values of p2 = 5; 10; 15

The following is valid

Proposition 2.1. The Lienard–type system for n = 9, and for all suf-
ficiently small ε 6= 0 for µ = 4.775885349 has two simple limit cycles:
0.435266, 1.00617 and limit cycle 0.7960 with multiplicity – two.

Proof. For the Melnikov polynomial in r2 (see Fig. 3) we have:

P (r2, 4) =
µ

2
− 45

2
r2 +

525

8
r4 − 1225

16
r6 +

3969

128
r8. (1.6)

Evidently, for example µ = 4.775885349 we have two simple limit
cycles and limit cycle with multiplicity – two.

The catastrophe surfaces for n = 9, (x, y, p2) = p2x− 60x3 + 210x5−
280x7 + 126x9 − y for the model is shown on Fig. 4.

Consider a Lienard system of type
dx

dt
= y

dy

dt
= g(x) + εf(x)y

(1.7)

where 0 ≤ ε ≤ 1.

The solution of the system (1.7) for x0 = 0.5, y0 = 0.5, ε = 0.0001,
g(x) = R1

9(x), f(x) = x−x3 +x5− 1
7x

7 is visualized on Fig. 5. The solution
of the system (1.7) for x0 = 0.7, y0 = 0.3, ε = 0.0001, g(x) = R1

9(x),
f(x) = x− x3 + x5 − 1

7x
7 is depicted on Fig. 6.

For other results see [9]–[13].
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Figure 5. a) The solutions of the
system (1.7) for x0 = 0.5, y0 = 0.5,
ε = 0.001, ε = 0.0001, g(x) = R1

9(x),
f(x) = x− x3 + x5 − 1

7
x7;

b) the y-component of the solution;

c) the portrait

Figure 6. a) The solutions of the
system (1.7) for x0 = 0.7, y0 = 0.3,
ε = 0.001, ε = 0.0001, g(x) = R1

9(x),
f(x) = x− x3 + x5 − 1

7
x7;

b) the y-component of the solution;

c) the portrait
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