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1. Introduction

The traditional integer calculus, is expanded by the fractional calcu-
lus, which has the characteristics of an infinite memory and is inherited. We
recommend the reader consult the monographs for some basic findings in
the theory of fractional calculus and fractional models [17, 20, 26, 28, 32].
In addition to the classical and fractional-order differential and integral
operators, Almeida introduced in [9] the ψ-Caputo fractional derivative,
which is another type of fractional derivative that defined by using a strictly
increasing function, when a specific exponent function is included in the
kernel operator.According to this idea, for specific selections of ψ(t), a large
class of well-known fractional derivatives, such as Caputo and Caputo-
Hadamard, were found. Additionally, some intriguing information regard-
ing the ψ-Caputo fractional derivative initial value and boundary value
problems may be found in [4, 10, 13, 29]. The reader is urged to con-
sult the references [7, 16, 21] for further information on fixed point theory,
which is a highly helpful tool in the theory of the existence of solutions
to functional and differential equations. which saw a lot of academics fo-
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cus on the existence and uniqueness of solutions for differential equations
involving various types of fractional derivatives under distinct boundary
conditions. Additionally, a fascinating and effective technique for address-
ing the existence results for fractional differential equations is the measure
of noncompactness. For instance, various writers have used the well-known
Darbo fixed point theorem and the Monch fixed point theorem to obtain
findings of existence for nonlinear integral equations [3, 8, 15]. The study
of linked systems involving fractional differential equations, on the other
hand, has become quite important. These systems appear in a variety of
applied science applications. However, a study of coupled evolution sys-
tems with various derivatives, including Caputo derivative, are rare, if not
nonexists yet. but there are a few in study of coupled evolution systems
and albeit slowly, seen for example [1, 2, 22]. Consequently, the purpose
of this work is to start to the growing field of knowledge in this area. To
be realistic in this study, the authors in [33], explored the existence of
mild solutions to starting value problems for fractional semilinear evolu-
tion equations with compact and noncompact semigroups on a local and
global scale, as well as their uniqueness. They derive the fundamental so-
lution’s form from the Caputo fractional derivative-induced semigroup and
ψ-function. Motivated by the above papers, we are devoted to establishing
some results on the existence of solutions for a new coupled system of non-
linear fractional differential equations involving the ψ-Caputo derivative
in abstract spaces. According to the authors’ knowledge, no publication
has examined nonlinear coupled evolution problem systems of ψ-Caputo
differential equations with initial conditions in Banach Spaces. We shall
then close this deficit. It is crucial to note that the solutions reported
in this study are novel and produce a number of novel results as special
instances for adequate parameter selection in the relevant problem. More
specifically, we pose the following problem:{

Dq;ψ
0+ x(t) = Ax(t) + f(t, x(t), y(t)), t ∈ ∆ = [0, T ],

x(0) = x0.
(1.1)

Where T > 0, Dq,ψ
0+ is the ψ-Caputo fractional derivative of order

q ∈ (0, 1], f : [0, 1] × X × X → X, is a given functions satisfying some
assumptions that will be specified later, X is a Banach space with norm
‖ · ‖ and x0 ∈ X. and, A is a linear operator with nondense domaine.

The structure of this paper is as follows: in Sect. 2, we introduce
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definitions and preliminary results that we will need to prove our main
results. In Sect. 3, we constructed the mild solution. In sec 4 we establish
the existence of solutions for the problem (1.1). After that, we give a
concrete example to illustrate our main results in Sect. 4 and the last
section concludes this paper.

2. Preliminaries

In this section, we give some notations, definitions and results on ψ-
fractional derivatives and ψ-fractional integrals, for more details we refer
the reader to [9, 25].

Let C(∆, X) be the Banach space of all continuous functions u from
∆ into X with the supremum (uniform) norm:

‖u‖∞ = sup
t∈∆
{‖u(t)}.

By L1(∆) , we denote the space of Bochner-integrable functions u : ∆→ E,
with the norm:

‖u‖1 =

∫ T

0

‖u(t)‖dt.

Next, we define the Kuratowski measure of noncompactness and give some
of its important properties.

Definition 2.1. [14] The Kuratowski measure of noncompactness µ defined
on bounded set S of Banach space X is:

µ(S) := inf{ε > 0 : S =
n⋃
k=1

Sk and diam (Sk) ≤ ε for k = 1, 2, . . . , n}.

The following properties about the Kuratowski measure of noncom-
pactness are well known.

Proposition 2.1. [14] Let X be a Banach space and A, B ⊂ E be bounded.
The following properties are satisfied:

(1) µ(A) ≤ µ(B) if A ⊂ B;

(2) µ(A) = µ(A) = µ(convA);

(3) µ(A) = 0 if and only if A is relatively compact;

(4) µ(λA) = |λ|µ(A){ where λ ∈ R;
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(5) µ(A ∪B) = max{µ(A), µ(B)};
(6) µ(A + B) ≤ µ(A) + µ(B), where A + B = {w|w = a + b, a ∈

A, b ∈ B;

(7) µ(A+ x) = µ(A) for any x ∈ E.

Lemma 2.1. [19] Let V ⊂ C(∆, E) be a bounded and equicontinuous
subset. Then, the function t→ µ(V (t)) is continuous on ∆:

µC(V ) = max
t∈∆

µ(V (t)) and µ

(∫
∆

u(s)ds

)
≤
∫

∆

µ(V (s))ds,

where V (s) = {u(s) : u ∈ V }, s ∈ ∆.

Definition 2.2. [34] A function f : [a, b]× E → E is said to satisfy the
Carathéodory conditions, if the following hold:

− f(t, u) is measurable with respect to t for u ∈ X;

− f(t, u) is continuous with respect to u ∈ X for t ∈ ∆.

A useful fixed point result for our goals is the following

Theorem 2.1. (Mönch’s fixed point theorem [24]). Let D be a bounded,
closed, and convex subset of a Banach space, such that 0 ∈ D, and let N
be a continuous mapping of D into itself. If the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ µ(V ) = 0, (1.2)

holds for every subset V ⊂ D, then N has a fixed point.

Now, we give some results and properties from the theory of fractional
calculus. We begin by defining ψ-Riemann-Liouville fractional integrals,
for more details we refer the reader to [9, 25]. In what follows:

In this section, we give some notations, definitions and results on ψ-
fractional derivatives and ψ-fractional integrals, for more details we refer
the reader to [9, 25].

• We denote by X a Banach space with the norm ‖ . ‖.
• We denote by C := C(∆, X) the Banach space of all continuous

functions endowed with the topology of uniform convergence de-
noted by

‖ x ‖∞ = sup
t∈∆
‖x(t)‖ .
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• We denote by Br the closed ball centered at 0 with radius r > 0.

Definition 2.3. [9] Let q > 0, g ∈ L1(∆,R) and ψ ∈ Cn(δ,R) such that
ψ′(t) > 0 for all t ∈ J . The ψ-Riemann-Liouville fractional integral at
order q of the function g is given by

Iq,ψ0+ g(t) =
1

Γ(q)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))q−1g(s)ds. (1.3)

Remark 2.1. Note that if ψ(t) = t and ψ(t) = log(t), then the equation
(1.3) is reduced to the Riemann-Liouville and Hadamard fractional integrals
respectively.

Definition 2.4. [9] Let q > 0, g ∈ Cn−1(J,R) and ψ ∈ Cn(J,R) such that
ψ′(t) > 0 for all t ∈ J . The ψ−Caputo fractional derivative at order q of
the function g is given by

CDq,ψ
0+ g(t) =

1

Γ(n− q)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))n−q−1g
[n]
ψ (s)ds, (1.4)

where

g
[n]
ψ (s) =

(
1

ψ′(s)

d

ds

)n
g(s) and n = [q] + 1,

and [q] denotes the integer part of the real number q.

Remark 2.2. In particular, note that if ψ(t) = t and ψ(t) = log(t), then
the equation (1.4) is reduced to the the Caputo fractional derivative and
Caputo-Hadamard fractional derivative respectively.

Remark 2.3. In particular, if q ∈]0, 1[, then we have

CDq,ψ
0+ g(t) =

1

Γ(q)

∫ t

0

(ψ(t)− ψ(s))q−1g′(s)ds

and
CDq,ψ

0+ g(t) = I1−q,ψ
0+

(
g′(t)

ψ′(t)

)
.

Proposition 2.2. [9] Let q > 0, if g ∈ Cn−1(J,R), then we have

1) CDq,ψ
0+ I

q,ψ
0+ g(t) = g(t).
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2) Iq,ψ0+
CDq,ψ

0+ g(t) = g(t)−
n−1∑
k=0

g
[k]
ψ (0)

k!
(ψ(t)− ψ(0))k.

3) Iq,ψa+ is linear and bounded from C(J,R) to C(J,R).

Proposition 2.3. [9] Let t > 0 and q, β > 0, then we have

1) Iq,ψ0+ (ψ(t)− ψ(0))β−1 =
Γ(β)

Γ(β + q)
(ψ(t)− ψ(0))q+β−1.

2) CDq,ψ
0+ (ψ(t)− ψ(0))β−1 =

Γ(β)

Γ(β − q)
(ψ(t)− ψ(0))q−β−1.

3) CDq,ψ
0+ (ψ(t)− ψ(0))k = 0, ∀k < n ∈ N.

Definition 2.5. [33] Let x : ∆→ X be a function. The generalized Laplace
transform of x is given by

Lψ{y(t)}(s) := x̂(s) =

∫ ∞
0

ψ′(t)e−s(ψ(t)−ψ(0))x(t)dt.

Definition 2.6. [33] Let f and g be two functions which are piecewise
continuous on J and of exponential order. The generalized ψ−convolution
of f and g is defined by

(f ∗
ψ
g)(t) =

∫ t

0

f(s)g(ψ−1(ψ(t) + ψ(0)− ψ(s)))ψ′(s)ds.

Lemma 2.2. (See [33]). Let q > 0 and y be a piecewise continuous function
on each interval [0, t] and ψ(t)−exponential order. Then we have

1. Lψ{Iq,ψ0+ y(t)}(s) =
ŷ(s)

sq
.

2. Lψ{CDq,ψ
0+ y(t)}(s) = sq

[
Lψ{y(t)} −

n−1∑
k=0

s−k−1f (k)(0)

]
, where n =

[q] + 1.

Definition 2.7. (See [33]) Let ψ ∈ [0,∞). The one-sided stable probability
density is defined by

ωq(t) =
1

π

∞∑
n=1

(−1)n−1(ψ(t)− ψ(0))−qn−1 Γ(qn+ 1)

n!
sin(nπq).
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It is easy to show that

Lemma 2.3. The Laplace transform of ωq(t) is given by∫ ∞
0

e−λ(ψ(t)−ψ(0))ωq(t)ψ
′(t)dt = e−λ

q

.

Remark 2.4. Note that for an abstract function u: ∆→ E, the integrals
which appear in the previous definitions are taken in Bochner’s sense (see,
for instance, [30]).

3. Construction of mild solutions

In this section, we use the ψ-Laplace transform to construct the in-
tegral solution for the fractional evolution problem (1.1). For this purpose
we need to prove to the following lemma.

Lemma 3.1. The fractional evolution problem (1.1) is equivalent to the
following integral equation

x(t) = x0 + Iq,ψ0+

(
Ax(t) + f (t, x(t))

)
, ∀t ∈ ∆. (1.5)

Proof. Let x be a solution of the problem (1.1), then we apply the ψ−frac-

tional integral Iq,ψ0+ on both sides of (1.1) we get

Iq,ψ0+
CDq,ψ

0+ x(t) = Iq,ψ0+

[
Ax(t) + f (t, x(t))

]
,

and by using Proposition 2.2 we obtain

x(t)− x(0) = Iq,ψ0+ [Ax(t) + f(t, x(t))],

since x(0) = x0, it follows that

x(t) = x0 +
1

Γ(q)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))q−1[Ax(s) + f (s, x(s))]ds.

Hence the integral equation (1.5) holds.

Conversely, by direct computation, it is clear that if x satisfies the
integral equation (1.5), then the problem (1.1) holds which completes the
proof.

33



23–25 November 2022, Pamporovo, Bulgaria

Definition 3.1. A function x(t) is said to be an integral solution of (1.1)
if

1. x : ∆→ X,

2. Iq,ψ0+ x(t) ∈ D(A), ∀t ∈ ∆,

3. x(t) = x0 + AIq,ψ0+ x(t) + Iq,ψ0+ f ((t, x(t))
)
.

Remark 3.1. We have the following remarks.

1. By using Proposition 2.2, we have I1,ψx(t) = I1−q,ψIq,ψ0+ x(t).

2. If x(t) is an integral solution of (1.1), then Iq,ψ0+ x(t) ∈ D(A), ∀t ∈
∆, which implies that

I1,ψx(t) = I1−q,ψIq,ψ0+ x(t) ∈ D(A) for t ∈ ∆.

3. The limit lim
h→0

1

h

∫ t+h

t

x(s)ds ∈ X0 for t ∈ ∆ shows that x(t) ∈

D(A).

Let A0 be the part of A in X0 = D(A) defined by{
D(A0) = {x ∈ D(A) : Ax ∈ D(A)},
A0x = Ax.

We assume the following hypotheses throughout the rest of our paper.

(H1) The linear operator A : D(A) ⊂ X → X satisfies the Hille-Yosida
condition, that is, there exist two constant ω,M ∈ R such that
(ω, +∞) ⊆ ψ(A) and∥∥∥ (λI − A)−k

∥∥∥ ≤ M

(λ− ω)k
, ∀λ > ω, k ≥ 1.

(H2) T (t) is continuous in the uniform topology for t > 0.

Since the operator A0 satisfies the Hille-Yosida condition, we can find
the mild solution on D(A0). For this purpose, let us consider the following
auxiliary problem:{

CDq,ψ
0+ x(t) = A0x(t) + g(t), t ∈ ∆,

x(0) = x0,
(1.6)
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where g is a given continuous function.

Lemma 3.2. Let λ > ω, then the resolvent Rλ of A satisfies

Rλ := (λI − A)−1 =

∫ ∞
0

e−λ(ψ(t)−ψ(0))T (ψ(t)− ψ(0))ψ′(t)dt.

Proof. Let x ∈ D(A). From (H2) it follows that∫ ∞
0

e−λ(ψ(t)−ψ(0))T (ψ(t)− ψ(0))xψ′(t)dt =

∫ ∞
0

e−λtT (t)dt = (λI − A)−1 x.

That’s true of all x ∈ D(A), which implies the results.

Proposition 3.1. If the fractional integral equation

x(t) = x0 + Φ(x) + Iq,ψ0+

(
A0x(t) + g(t)

)
holds and g takes values in X0, then we have

x(t) = Sq,ψ(t)(x0) +

∫ ψ(t)−ψ(0)

0

Kq,ψ (ψ(t)− ψ(s)) g(s)ψ′(s)ds,

where
Sq,ψ(t) = I1−q,ψKq,ψ(t),

and

Kq,ψ(t) = tq−1

∫ ∞
0

q (ψ(ψ)− ψ(0))ωq(ψ)Ttq(ψ(ψ)−ψ(0))ψ
′(ψ)dψ.

Proof. Let λ > 0. From Lemmas 2.2 and 3.1 we have

x̂ =
1

λ
(x0) +

1

λq
(A0x̂+ ĝ) ,

we obtain
x̂ = λq−1 (λqI − A0)

−1 (x0) + (λqI − A0)
−1 ĝ.

Let’s pose I1 = λq−1 (λqI − A0)
−1 (x0) and I2 = (λqI − A0)

−1 ĝ , i.e

I2 =

∫ +∞

0

e−λ
qsTsĝds.
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From Lemma 3.2, we get

λ1−qI1 = (λqI − A0)
−1 (x0)

=

∫ +∞

0

e−λ
q(ψ(s)−ψ(0))Tψ(s)−ψ(0) (x0)ψ

′(s)ds

=

∫ +∞

0

qe−
(
λ(ψ(t)−ψ(0))

)q
T(ψ(t)−ψ(0))q (x0) (ψ(t)− ψ(0))q−1ψ′(t)dt

= q

∫ ∞
0

∫ +∞

0

e−λ(ψ(t)−ψ(0))(ψ(s)−ψ(0))χq(s)

× T(ψ(t)−ψ(0))q (x0) (ψ(t)− ψ(0))q−1ψ′(s)ψ′(t)dtds

= q

∫ ∞
0

∫ +∞

0

e−λ(ψ(t)−ψ(0))χq(s)

× T (ψ(t)−ψ(0)
ψ(s)−ψ(0) )q

(x0)
(ψ(t)− ψ(0))q−1

(ψ(s)− ψ(0))q
ψ′(s)ψ′(t)dtds

=

∫ ∞
0

e−λ(ψ(t)−ψ(0))

×
[ ∫ ∞

0

qχq(s)
(ψ(t)− ψ(0))q−1

(ψ(s)− ψ(0))q
T(ψ(t)−ψ(0)ψ(s)−ψ(0))

q (x0)ψ
′(s)ds

]
ψ′(t)dt

= Lψ (Kq,ψ) (ψ(t)− ψ(0)) (x0) ,

where

Kq,ψ(t) =

∫ ∞
0

qχq(s)
(ψ(t)− ψ(0))q−1

(ψ(s)− ψ(0))q
T(ψ(t)−ψ(0)ψ(s)−ψ(0))

q (x0)ψ
′(ψ)ds.

We can write

Kq,ψ(t) = tq−1

∫ ∞
0

qψωq(ψ)T
tq(ψ(ψ)−ψ(0))

)ψ′(ψ)dψ,

where

ωq(ψ) = (ψ(ψ)− ψ(0))
−1
q χq

(
ψ−1

((
1

ψ(ψ)− ψ(0)

) 1
q

+ ψ(0)

))
.

On other hand, we have

Lψ
(

(ψ(t)− ψ(0))−q

Γ(1− q)

)
(λ) = λq−1,
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which implies that

I1 = Lψ
(

(ψ(.)− ψ(0))−q

Γ(1− q)
∗Kq,ψ(.)

)
(t) = Lψ

(
I1−q,ψKq,ψ(t)

)
.

Let us calculate I2.

I2 =

∫ ∞
0

e−λ
q(ψ(t)−ψ(0))Tψ(t)−ψ(0)ĝψ

′(t)dt

=

∫ ∞
0

∫ ∞
0

e−λ
q(ψ(t)−ψ(0))e−λ(ψ(s)−ψ(0))Tψ(t)−ψ(0)g(s)ψ′(s)ψ′(t)dsdt

=

∫ ∞
0

∫ ∞
0

q (ψ(t)− ψ(0))q−1 e−
(
λ(ψ(t)−ψ(0))

)q
e−λ(ψ(s)−ψ(0))

×T(ψ(t)−ψ(0))
qg(s)ψ′(s)ψ′(t)dtds

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

qχqe
−
(
λ(ψ(t)−ψ(0))(ψ(r)−ψ(0))

)
e−λ(ψ(s)−ψ(0))(r)

×T(ψ(t)−ψ(0))
q (ψ(t)− ψ(0))q−1 g(s)ψ′(r)ψ′(s)ψ′(t)dtdsdr

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

qχq(r)e
−λ(ψ(t)+ψ(s))

×T( ψ(t)−ψ(0)ψ(r)−ψ(0))
q
(ψ(t)− ψ(0))q−1

(ψ(r)− ψ(0))q
g(s)ψ′(r)drψ′(s)dsψ′(t)dt

=

∫ ∞
0

e−λ(ψ(t)−ψ(0))

×
[ ∫ ψ(t)−ψ(0)

0

∫ ∞
0

qχq(r)T (ψ(t)−ψ(0))q−1
(ψ(r)−ψ(0))q (ψ(r)−ψ(0))

q

(ψ(t)− ψ(s))q−1

(ψ(r)− ψ(0))q

×g(s)ψ′(r)ψ′(s)drds
]
ψ′(t)dt

= Lψ (Kq,ψ (ψ(t)− ψ(s))) .

Thus x(t) can be written as follows:

x(t) = Sq,ψ(t)(x0) +

∫ ψ(t)−ψ(0)

0

Kq,ψ (ψ(t)− ψ(s)) g(s)ψ′(s)ds,

where Sq,ψ(t) = I1−q,ψKq,ψ(t), which completes the proof.

Remark 3.2. From (H1) we have ‖ Rλ‖ ≤
λM

λ− ω
, then we get

lim
λ→+∞

‖ Rλ‖ ≤M.
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Proposition 3.2. We assume that (H2) holds, then

1. for a fixed t > 0, {Kq,ψ(t)}t>0 and {Sq,ψ(t)}t>0 are linear operators.

2. for x ∈ X0, then ‖ Kq,ψ(t)x ‖ ≤ tq−1M
Γ(1+q)‖x‖ and ‖ Sq,ψ(t)x ‖ ≤

M
q ‖ x ‖ .

3. {Kq,ψ(t)}t>0 and {Sq,ψ(t)}t>0 are strongly continuous.

Proof. Since we have

∫ ∞
0

qψωq(ψ)ψ′(ψ)dψ =
1

Γ(1 + q)
, then

‖ Kq,ψ(t)x ‖ ≤ tq−1M

Γ(1 + q)
‖ x ‖ .

From the above inequality it follows that∥∥∥ Sq,ψ(ψ(t)− ψ(0))x
∥∥∥ =

∥∥∥ I1−q,ψKq,ψ(ψ(t)− ψ(0))x
∥∥∥

≤ MI1−q,ψ(ψ(t)− ψ(0))q−1

Γ(1 + q)
‖ x ‖

≤ MΓ(q)

Γ(1 + q)
‖ x ‖

≤ M

q
‖ x ‖ ,

which implies that ‖ Sq,ψ(t)x ‖ ≤ M
q ‖ x ‖.

Let x ∈ X0 and 0 < t1 < t2 ≤ T, from a simple calculation, it follows
that

lim
t1→t2

∥∥∥ Kq,ψ(t1)x−Kq,ψ(t2)x
∥∥∥ = 0 and lim

t1→t2

∥∥∥ Sq,ψ(t1)x− Sq,ψ(t2)x
∥∥∥ = 0.

Lemma 3.3. The integral equation of (1.6) is given by

x(t) = Sq,ψ(t)(x0)

+ lim
λ→∞

∫ ψ(t)−ψ(0)

0

Kq,ψ (ψ(t)− ψ(s))Rλg(s)ψ′(s)ds.
(1.7)
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Proof. We have that

xλ(t) = Rλx(t) , gλ(t) = Rλg(t) , xλ = Rλx(0).

By applying Rλ to (1.6), we have

xλ(t) = xλ + A0I
q,ψ
0+ xλ(t) + Iq,ψ0+ gλ(t) ,

hence

xλ(t) = Sq,ψ(t)xλ +

∫ ψ(t)−ψ(0)

0

Kq,ψ(ψ(t)− ψ(s))gλ(s)ds,

since x(t), x(0) ∈ X0, we have

xλ(t)→ x(t), xλ → x(0), Sq,ψ(t)xλ → Sq,ψ(t)x(0), as λ→ +∞.

Thus (1.7) holds. This completes the proof.

Lemma 3.4. Let x ∈ X and t ≥ 0, then

lim
λ→+∞

∫ ψ(t)−ψ(0)

0

Kq,ψ (ψ(s)− ψ(s))Rλxψ
′(s)ds

exists and the mapping

ηq,ψ(x) = lim
λ→+∞

∫ ψ(t)−ψ(0)

0

Kq,ψ (ψ(s)− ψ(s))Rλxψ
′(s)ds

define a linear operator from X0 into X0.

Proof. Let Ψq,ψ(t) be the following operator

Ψq,ψ(t)x0 =

∫ ψ(t)−ψ(0)

0

Kq,ψ (ψ(s)− ψ(s))Rλx0ψ
′(s)ds,

for x0 ∈ X0 and t ≥ 0.

Then, the following operator

ςq,ψ(t) = (λI − A)Ψq,ψ(t)(λI − A)−1, λ > ω,

extends Ψq,ψ(t) from X0 to X.
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This definition is independent of λ due to resolvent identity. Since
ςq,ψ(t) maps X into X0, then we have

ςq,ψ(t)x = lim
λ→+∞

Rλςq,ψ(t)x = lim
λ→+∞

Ψq,ψ(t)Rλx.

This completes the proof.

Lemma 3.5. Let x ∈ X0 and t ≥ 0, then we have CDq,ψ
0+ Ψq,ψ(t)x = Sq,ψ(t)x

and Sq,ψ(t)x = AΨq,ψ(t)x+ x.

Proof. The proof of this Lemma derived directly from the definitions of
Sq,ψ(t) and Ψq,ψ(t) for t ≥ 0.

Lemma 3.6. The following statements hold:

(i) Let x ∈ X and t ≥ 0, then

Iq,ψ0+ ςq,ψ(t)x ∈ D(A),

and

ςq,ψ(t)x = A(Iq,ψ0+ ςq,ψ(ψ(t)− ψ(0))x) +
(ψ(t)− ψ(0))q

Γ(1 + q)
x.

(ii) If x ∈ D(A), then

ςq,ψ(t)Ax+ x = Sq,ψ(t)x.

Proof. To show (i), let x ∈ X and t ≥ 0, then we have

ζ(t) = λIq,ψ0+ Ψq,ψ(t)(λI − A)−1x

+
(ψ(t)− ψ(0))q

Γ(1 + q)
(λI − A)−1x−Ψq,ψ(t)(λI − A)−1x.

Clearly ζ(0) = 0. From Lemma 3.5 we have

CDq,ψ
0+ ζ(t) = λΨq(t)(λI − A)−1x+ (λI − A)−1x− cCDq,ψ

0+
Ψq,ψ(t)(λI − A)−1x

= λΨq,ψ(t)(λI − A)−1x+ (λI − A)−1x− Sq,ψ(t)(λI − A)−1x

= λΨq,ψ(t)(λI − A)−1x+ (λI − A)−1x− AΨq,ψ(t)(λI − A)−1x

− (λI − A)−1x
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= λΨ0
q,ψ(t)(λI − A)−1x− AΨq,ψ(t)(λI − A)−1x

= (λI − A)Ψq,ψ(t)(λI − A)−1x

= ςq,ψ(t)x.

It follows that

ζ(t) = Iq,ψ0+ ςq,ψ(t)x+ ζ(0) = Iq,ψ0+ ςq,ψ(t)x,

and

(λI − A)ζ(t) = (λI − A)Iq,ψ0+ ςq,ψ(t)x

= λIq,ψ0+ ςq,ψ(t)x+
(ψ(t)− ψ(0))q,ψ

Γ(1 + q)
x− ςq,ψ(t)x.

Thus

ςq,ψ(t)x = A(Iq,ψ0+ ςq,ψ(t)x) +
(ψ(t)− ψ(0))q

Γ(1 + q)
x.

Now, we prove (ii). Let x ∈ D(A), it follows from Lemmas 3.4 and
3.5 that

ςq,ψ(t)Ax = lim
λ→+∞

∫ ψ(t)−ψ(0)

0

Kq,ψ(ψ(s)− ψ(0))RλAxψ
′(s)ds

= lim
λ→+∞

A0

∫ ψ(t)−ψ(0)

0

Kq,ψ(s)Rλxψ
′(s)ds

= A0Ψq,ψ(t)x = Sq,ψ(t)x− x.

This completes the proof.

Theorem 3.1. The mild solution of the evolution problem (1.6) is given
by

x(t) = Sq,ψ (x0) + lim
λ→∞

∫ t

0

Kq,ψ (ψ(t)− ψ(s))Rλg(s)ds.

Proof. The proof is given in several steps:
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1) Step 1: Let g be always differentiable, then for t ∈ ∆, we have.

xλ(t) =

∫ ψ(t)−ψ(0)

0

Kq,ψ(s)Rλg(s)ψ′(s)ds

=

∫ ψ(t)−ψ(0)

0

K
q,ψ

(s)Rλ(g(0) +

∫ s

0

g′(r)dr)ψ′(s)ds

=

∫ ψ(t)−ψ(0)

0

K
q,ψ

(s)Rλg(0)ψ′(s)ds

+

∫ ψ(t)−ψ(0)

0

K
q,ψ

(s)Rλ

∫ s

0

g′(r)dr)ψ′(s)ds

= Ψ
q,ψ

(t)Rλg(0) +

∫ t

0

ς0
q,ψ

(ψ(t)− ψ(r))Rλg
′(r)dr.

By Lemma 3.5 for t ∈ ∆, we obtain

x(t) = lim
λ→+∞

xλ(t)

= ςq,ψ(t)g(0) +

∫ t

0

ςq,ψ(ψ(t)− ψ(r))g(r)dr

= A(Iq,ψ0+ ςq,ψ(t)g(0)) +
(ψ(t)− ψ(0))q

Γ(1 + q)
g(0)

+

∫ t

0

[A(Iq,ψ0+ ςq,ψ(ψ(t)− ψ(r))) +
(ψ(t)− ψ(r))q

Γ(1 + q)
]g′(r)dr

= A[Iq,ψ0+ Φq,ψ(t)f(0) +

∫ t

0

Iq,ψ0+ Φq,ψ(ψ(t)− ψ(r))g′(r)dr]

+
(ψ(t)− ψ(0))q

Γ(1 + q)
g(0) +

1

Γ(1 + q)

∫ t

0

(ψ(t)− ψ(r))qg′(r)dr

= A[Iq,ψ0+ ςq,ψ(t)g(0) + Iq,ψ0+ (

∫ t

0

Φq,ψ(ψ(t)− ψ(r))g′(r)dr)]

+
(ψ(t)− ψ(0))q

Γ(1 + q)
g(0) +

1

Γ(1 + q)

∫ t

0

(ψ(t)− ψ(r))qg′(r)dr

= A(Iq,ψ0+ x(t)) + Iq,ψ0+ g(t) .

2) Step 2: Now, we approach g through continuously differentiable
functions gn such that:

sup
t∈∆
‖g(t)− gn(t)‖ → 0, as n→∞.
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Letting

xn(t) = lim
λ→∞

∫ t

0

Kq,ψ(ψ(s))Rλgn(s)ds,

we have
xn(t) = A(Iq,ψ0+ xn(t)) + Iq,ψ0+ gn(t) .

Hence

‖ xn(t)− xm(t)‖ =
∥∥∥ lim
λ→∞

∫ t

0

Kq,ψ(s)Rλ[gn(s)− gm(s)]ds
∥∥∥

≤ M(ψ(T )− ψ(0))q

Γ(q)
‖ gn − gm‖ ,

which implies that {xn} is a Cauchy sequence and its limit is de-

noted by x(t), thus we obtain x(t) = A(Iq,ψ0+ x(t)) + Iq,ψ0+ f(t) for
t ∈ ∆. This completes the proof.

Corollary 3.1. By using definition 3.1, remark 3.1 and theorem 3.1 we can
give the mild solution of the fractional evolution problem (1.1) as follows:

x(t) = Sq,ψ (x0) + lim
λ→∞

∫ t

0

Kq,ψ (ψ(t)− ψ(s))Rλf(s, x(s)))ψ′(s)ds.

4. Main results

Now, we shall present our main result concerning the existence of
solutions of problem (1.1). Let us introduce the following hypotheses:

(H3) The function f : ∆×X → X satisfy Carathéodory conditions.

(H4) There exist µf ∈ L∞(∆, R+), and a continuous nondecreasing
function φ: R+ → R+, such that ‖f(t, u)‖ ≤ µf(t)φ(‖u‖) for a.e. t ∈ ∆
and each u ∈ X.

(H3) For each bounded set D ⊂ X, and each t ∈ ∆, the following
inequality holds:

µ(f(t, D)) ≤ µf(t)µ(D).

In the following, for computational convenience, we put:

L =
(ψ(T )− ψ(0))q

Γ(1 + q)
, µ∗f = sup

t∈∆
µf(t).
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Now, we shall prove the following theorem concerning the existence
of solutions of problem (1.1).

Theorem 4.1. Assume that the hypotheses (H1)− (H3) are satisfied. If

Lµ∗f < 1, (1.8)

then the problem (1.1) has at least one solution defined on ∆

Proof. Define the operator T : C(∆, X)→ C(∆, X), by:

(T (x))(t) = Sq,ψ (x0)

+ lim
λ→∞

∫ t

0

Kq,ψ (ψ(t)− ψ(s))Rλf(s, x(s)))ψ′(s)ds, t ∈ ∆. (1.9)

It is obvious that T is well defined due to (H1) and (H2). Then, the
fractional integral equation (7) can be written as the following operator
equation:

x = T (x). (1.10)

Thus, the existence of a solution for equation (1.1) is equivalent to the
existence of a fixed point for operator T which satisfies operator equation
(1.10). Define a bounded closed convex set:

BR = {x ∈ C(∆, X) : ‖x‖ ≤ R},

with R > 0, such that:

R ≥M

(
‖x0‖
q

+ φ(R)

)
.

To satisfy the hypotheses of Mönch’s fixed point theorem, we split the
proof into four steps.

Step 1. The operator T maps the set BR into itself. Let x ∈ BR. Then,
for each t ∈ ∆, we have:

‖(T (x))(t)‖ ≤ ‖Sq,ψ‖‖x0‖

+

∫ t

0

ψ′(s)(ψ(t)− ψ(s))q−1

Γ(q)
‖Kq,ψ‖‖f(s, x(s))‖ds.

44



International Scientific Conference IMEA’2022

By using (H2) and (H4), for each t ∈ ∆, we have:

‖f(t, x(t))‖ ≤ µf(t)φ(‖x(t)‖) ≤ µ∗fφ(‖x(t)‖.

Hence:

‖(T (x))‖∞ ≤
M

q
‖x0‖+MLµ∗fφ(R),

but, Lµ∗f < 1, which implies that

≤M

(
‖x0‖
q

+ φ(R)

)
.

≤ R.

This proves that T transforms the ball BR into itself.

Step 2. The operator T is continuous. Consider a sequence {xn} ∈ BR,
such that xn → x as n → ∞. We need to show that ‖T xn − T x‖ → 0 as
n → ∞. On one hand, it is easy to see that f(s, xn(s)) → f(s, x(s)), as
n → +∞, due to the Carathéodory continuity of f . On the other hand,
taking (H2) into consideration, we get the following inequality:

ψ′(s)(ψ(t)− ψ(s))q−1‖f(s, xn(s))− f(s, x(s))‖
≤ 2µ∗fφ(R)ψ′(s)(ψ(t)− ψ(s))q−1.

We notice that since the function s 7→ 2µ∗f1φ(R)ψ′(s)(ψ(t)−ψ(s))q−1

is Lebesgue integrable over [a, t]. This fact together with the Lebesgue
dominated convergence theorem implies that:∫ t

a

ψ′(s)(ψ(t)− ψ(s))q−1

Γ(q)
‖f(s, xn(s))− f(s, x(s))‖ds→ 0, as n→ +∞.

It follows that:

‖(T (xn))(t)− (T (x))(t)‖ → 0 as n→ +∞ for any t ∈ ∆.

Therefore, we get that:

‖(T (xn))− (T (x))‖ → 0 as n→ +∞,

which implies the continuity of the operator T .
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Step 3. The operator T is equicontinuous. For any a < t1 < t2 < b and
x ∈ BR, we get:

‖(T (x))(t2)− (T (x))(t1)‖

≤
∫ t1

0

ψ′(s)[(ψ(t1)− ψ(s))q−1 − (ψ(t2)− ψ(s))q−1]

Γ(q)
‖f(s, x(s))‖ds

+

∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))q−1

Γ(q)
‖f(s, x(s))‖ds

≤
µ∗fφi(R)

Γ(q + 1)
[(ψ(t1)− ψ(a))q + 2(ψ(t2)− ψ(t1))

q − (ψ(t2)− ψ(a))]

≤
2µ∗fφ(R)

Γ(q + 1)
(ψ(t2)− ψ(t1))

q,

where we have used the fact that (ψ(t1) − ψ(a))q − (ψ(t2) − ψ(a))q ≤ 0.
Therefore:

‖(T (x))(t2)− (T (x))(t1)‖ ≤ 2
µ∗fφ(R)

Γ(q + 1)
(ψ(t2)− ψ(t1))

q

= 2µ∗fφ(R)(ψ(t2)− ψ(t1))
q.

As t2 → t1, the right-hand side of the above inequality tends to zero
independently of x ∈ BR. Hence, we conclude that T (BR) ⊆ C(∆, E) is
bounded and equicontinuous.

Step 4. The Mönch’s condition holds. For this purpose, let V be a subset
of BR, such that V ⊂ conv(T (V)∪{0}), V is bounded and equicontinuous,
and therefore, the function τ(t) = µ((t)) is continuous on ∆. By the
properties of the Kuratowski measure of noncompactness, Lemma 2 and
(H3), we have:

τ(t) = µ(V(t)) ≤ µ(conv(T (V)(t) ∪ {0})) ≤ µ((V)(t))

≤ µ

{∫ t

a

ψ′(s)(ψ(t)− ψ(s))q−1

Γ(q)
f(s, x(s))ds : x ∈ V

}
≤
∫ t

0

ψ′(s)(ψ(t)− ψ(s))q−1

Γ(q)
µ(f(s, V1(s)))ds

≤
∫ t

0

ψ′(s)(ψ(t)− ψ(s))q−1

Γ(q)
µf(s)µ(V(s))ds

≤ Lµ∗f‖τ‖.
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This gives that:
‖τ‖ ≤ Lµ∗f‖τ‖.

By (7), it follows that ‖τ‖∞ = 0; that is τ(t) = 0 for each t ∈ ∆.
In the similar way, we have τ(t) = 0. Hence, µ(V(t)) ≤ µ(V(t)) = 0 and
µ(V(t)) ≤ µ(V(t)) = 0, this means that V(t) is relatively compact in X.
In view of the AscoliArzelá theorem, V is relatively compact in BR. By
theorem 1, there is a fixed point x of T on BR, which is a solution of (1.1).
This completes the proof of theorem 2.

5. Illustrative example

In this section we give an example to illustrate our main result.

Consider the following hybrid fractional differential equation:
∂q

∂tqy(t, x) = ∂2

∂x2y(t, x)

+f(t, y(t, x)), x ∈ [0, π], t ∈ (0, b], 0 < q < 1,

y(t, 0) = y(t, π) = 0, t ∈ (0, T ],

y(0, x) = y0, x ∈ [0, π],

(1.11)

where f : [0, T ]× R→ R is a given function. Let

u(t)(x) = y(t, x) , t ∈ [0, T ], x ∈ [0, π],

g(t, u)(x) = f(t, u(x)) , t ∈ [0, T ], x ∈ [0, π].

We choose X = C([O, π], R) endowed with the uniform topology
and consider the operator A : D(A) ⊂ X → X defined by:

D(A) = {u ∈ C2([0, π], R) : u(0) = u(π) = 0}, Au = u.

It is well known that the operator A satisfies the Hille-Yosida condition

with (0, +∞) ⊂ ρ(A), ‖(λI − A)−1‖ ≤ 1

λ
for λ > 0, and

D(A) = {u ∈ X : u(0) = u(π) = 0} 6= X.

6. Conclusion

In this paper, we have studied the existence of the solution of frac-
tional differential equation of order 0 < q < 1 of the form (1.1), the search
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for the solution and the results of the existence are based on: the transform
of laplace, the measure of non compactness of Hausdorff and the theorem
of Mönch. For the application, we proposed an example problem to test
the theoretical results of this study.
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